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Abstract
This paper concerns an analysis of the stability of infinite planar interfaces
between two immiscible fluids. The interface is subjected to a two-dimensional
stress arising from the van der Waals interaction with a solid, infinite plate of
finite thickness, positioned edge-on to the interface. The physical problem
models the setup of a Wilhelmy plate experiment just prior to plate immersion
through a fluid interface and three-phase contact line formation. The van
der Waals surface force is attractive, causing the fluid interface to deform.
We investigate the stability of the fluid interface and establish an analytical
condition which is sufficient to ensure a stable interface as well as a condition
for which the interface will not be stable to arbitrary disturbances. Both
conditions focus on a sole, key function of the equilibrium profile, the latter a
solution of the Euler–Lagrange equation for the system.

PACS numbers: 47.20.−k, 82.70.Dd

1. Introduction

A technique commonly used in the field of surface chemistry to investigate interfacial tension
is the Wilhelmy plate method [1, 2]. In this technique a rectangular plate of material, normally
platinum, is immersed edge-on into a large-area trough of water exposed to air at atmospheric
pressure and room temperature. The determination of the interfacial tension is accomplished
by measuring the (net) amount of force required to support the plate against the force due to
surface tension. Since the dispersal of molecules having an affinity for the air–water interface
has an effect on the interfacial tension, properties of the surface and its constituent molecules
can be deduced by a comparison of the measured tension as a function of mean molecular area
[1]. Applications of this technique extend to dispersed surfactants or lipids [2, 3], proteins
[4–6] , polymers [2] and other surface active molecules, including mixed systems, i.e. those
involving two or more components. The technique is naturally not limited to the air–water
interface, though this is the most common. It has, for example, also been used in studies of
interfaces between other immiscible fluids, such as oil and water.
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A considerable amount of work on the theoretical modelling of the mechanics of the
Wilhelmy plate technique [1] as well as modelling of the phase behaviour of the two-
dimensional distribution of the surface active molecules exists [7]. However, in this paper
we divert attention from the surface tension measurement per se, albeit the most important
feature of the technique, to the more esoteric, pre-immersion configuration in which the plate
is in close vicinity to the interface. When in close proximity, but prior to three-phase contact,
a surface force of van der Waals type arises. The strength of this force is measured by a
Hamaker constant [8], a function of the bulk dielectric properties of the three media. This van
der Waals surface force, while short ranged, extends over a finite area of the fluid–fluid surface
and causes it to deform from its original flat shape. It is this deformation which is investigated
in this paper. In particular, we are interested in the following phenomena described in the
context of the air–water interface.

As the plate approaches the interface the water surface increases its deformation as a
result of the increasing attraction. At some finite height above the base water level or finite
proximity to the plate, the deformed water surface can no longer maintain its continuous and
smooth elongated shape. Indeed, at some finite separation, the water interface jumps up and
captures the plate, establishing three-phase contact. Determining this point of instability and
what it depends on is our essential goal. This paper contributes to this goal by providing some
mathematical foundations for understanding the stability and instability states. The analysis
and conclusions are not specific to any particular choice of two immiscible fluids. For this
reason the work is presented in a more general context; the interface between the two arbitrary
immiscible fluids we refer to as the fluid interface, for brevity.

It should be emphasized that it is the equilibrium stability of a free interface under
external stress that is studied in this paper. The techniques and results are to be distinguished
from studies of the dynamic stability of interfaces either due to hydrodynamic stresses or
combinations of hydrodynamic and other external stresses [9–12]. Equilibrium stability studies
following various theoretical approaches have been carried out on systems of interacting thin
films supported on solid substrates [13, 14] in order to quantify capillary condensation. These
systems, however, are too distinct for those results to be relevant to the present problem. On
the other hand, an equilibrium analysis of an axisymmetric (as opposed to mirror-symmetric)
system related to that studied here has been considered in [15], although without an explicit
treatment of stability. While mechanical limits of stability in terms of equation solvability
limits were discovered and discussed (a feature we discuss in an extensive study [16, 17]),
such mathematical limits, representing absolute bounds, are to be distinguished from physical
stability limits. The latter may ensure that the former are never attained in practice.

To assist the reader in his or her examination of the material in this paper we summarize
the most important features and results.

We begin in section 2 by setting up a physical model for the two-dimensional plate–
fluid interface system, illustrated in figure 1. Contributions to the total free energy of the
system are written in terms of an arbitrary fluid interface profile denoted as z(x); x being
the sole independent coordinate variable appearing in this two-dimensional problem. These
contributions are collected in the total energy which is then expanded about the optimum
profile, z(x), defined as that profile which zeros the first-order term in this expansion [18].
This is the essence of the variational approach [19, 20]; the optimum profile is required to
be the solution of the Euler–Lagrange equation corresponding to this vanishing first-order
term. We give examples of solutions to this Euler–Lagrange equation for some parameter
values.

The focus thereafter is on the status of the second-order term in the energy expansion
which governs whether the optimum profile is a local minimizer of the free energy, a local
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Figure 1. Schematic diagram depicting the cross-sectional geometry of the plate–fluid–fluid
system. The solid plate shown has the form of a parabolic cylinder with cross-section
zp(x) = zp0 + λx2

p , while the fluid interface is described by the function, z(x). The distance
D(x, z) is defined in the direction of the solid surface vector normal.

maximizer or a profile associated with a local saddle point of the free energy surface. These
mathematical states correspond to the physical states of stability, instability and marginal
stability, respectively. Consequently, in section 3 we address this stability question. The most
important feature of section 3 is the result of a reformulation of the second-order free energy
term which introduces a single function, � = �(x), defined in (22). This sole function, �,
is explicitly dependent on the optimal profile, z(x). The dependence is intricate indicating
that � must generally be determined numerically. In this section we give examples of the
function’s general appearance as well as its dependence on physical parameters.

In section 4 we present the key results of this paper: sufficient conditions governing the
stability state of the optimum profile assuming only that � conforms to certain expectations.
Using quite disparate approaches we establish (a) that if �, however it may appear in
detail, satisfies the condition, l2

G�(x) � K − (K + 4) exp
(−x2

/
l2
G

)
, for some given

interaction-independent positive constants, K and lG, then the profile z(x) will be stable
to all (small) perturbations, and (b) if l2

G�(x) � K − (K +f (K)) exp
(−x2

/
l2
G

)
, where f (K)

is an established positive function of K, then the profile z(x) cannot be stable to arbitrary
perturbations. We discuss and demonstrate the utility of these sufficient conditions using the
examples of section 3. Important details of the proofs of these sufficient conditions using
rigorous arguments are given in the appendix.

2. The equilibrium shape of the air–water interface

When the interface experiences the van der Waals stress the attraction that is manifested
between the plate and fluid interface causes the interface to deform, leading to a bulge in the
fluid surface beneath the plate. Associated with this deformation is a change in free energy.
Part of this change is represented by a gravitational potential term coming from the mass of
underlying fluid raised above the z = 0 reference plane. A further contribution is a surface
energy term arising from the increased surface area of fluid–fluid contact. Finally, there is the
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energy of interaction between the plate and fluid surface represented as a surface integral of
the surface energy density, σ . When deformed the free energy of the fluid interface changes
by

F = γA� + G

∫ ∫ ∫
�V�

z dV +
∫ ∫

�

σ dS. (1)

In (1) G = g�ρ, with fluid density difference �ρ and acceleration due to gravity, g; the
intrinsic interfacial tension is γ . The terms in (1) are, respectively, the surface energy
associated with the surface area change, the gravitational potential energy term and finally the
interaction term. � denotes the deformed interface.

We shall implicitly suppose that the stress acting over the surface possesses everywhere
continuous partial derivatives up to order k, with fixed k � 2. That is, σ ∈ Ck(R2), for some
k � 2.

The free energy change (1) defines a functional over a space of functions, �x , which
represents the set of all possible profiles of the fluid interface. As the plate positioned edge-on
over the infinite surface is assumed infinitely long (e.g., a regular parabolic cylinder as depicted
in figure 1), the problem becomes two-dimensional. Consequently, the free energy reduces to
a one-dimensional integral

� = γ

∫ ∞

−∞
W(zx(x)) dx +

1

2
G

∫ ∞

−∞
z(x)2 dx +

∫ ∞

−∞
W (zx(x))σ (x, z(x)) dx

where W(p) = (1 + p2)1/2. The functional, �, is clearly a free energy per unit length,
expressed as an (improper) integral of the multivariable function of (x, z, p)

f (x, z, p) = W(p)h(x, z) + 1
2Gz2 (2)

where h := γ + σ . W is a C∞-function; since σ (or h) is a Ck-function for k � 2, so too
is f . Both the equilibrium shape of the fluid interface and its state of stability are determined
through analyses of the first and second variations of the energy functional

�[ z ] =
∫ ∞

−∞
f (x, z(x), zx(x)) dx (3)

with respect to functions z belonging to an appropriate class, �x . In fact, from the physical
considerations of the problem we define �x to be the space of even, integrable functions, η,
that possess continuous second-order derivatives each of which is square integrable,∫ ∞

−∞
|η(k)|2 dx < ∞ k = 0, 1, 2.

That is, we define the set

�x = {η : η(k) ∈ C(R) ∩ L2(R), k = 0, 1, 2; η(x) = η(−x)}. (4)

Here, L2(R) is the space of square integrable functions [24].
Because of smoothness these functions necessarily satisfy the condition ηx(0) = 0.

Herewith, we shall suppose the existence of a function, z ∈ �x , hereafter referred to as the
equilibrium profile, that gives an extreme value to the functional �. Furthermore, we shall
assume that it is unique.

Consider an arbitrary z ∈ �x . A suitable element, η ∈ �x , and a real number, ε, can be
found to satisfy the equality, z(x) = z(x) + εη(x). The parameter, ε, will hereafter play the
role of an expansion parameter. Note that, since f is a Ck-function, � can be considered a
Ck-function of the parameter, ε, for k � 2. That is, for any fixed η ∈ �x

g(ε) := �[z + εη]
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is at least a C2-function of ε. Presuming that all requirements are met for a second-order
Taylor polynomial approximation to g(ε), we can write

g(ε) = g(0) + εg′(0) +
ε2

2
g′′(0) + O(ε3). (5)

The first term of (5) corresponds to the functional, �, evaluated at the equilibrium profile, z.
According to the fundamental theorem of variational calculus [20], the vanishing of the second
term of (5) leads to the Euler–Lagrange equation for z. Invoking the first partial derivatives of
f (x, z, p) with respect to z and p,{

fz = Gz + hz(x, z)W(p)

fp = h(x,z)p

W(p)

(6)

we obtain the Euler–Lagrange equation satisfied by the equilibrium solution, z,(
h(x, z)zx

W(zx)

)
x

= Gz + hz(x, z)W(zx). (7)

2.1. Numerical examples of the equilibrium profile

The relevant interaction between the fluid interface and the 2D solid across an immiscible fluid
gap is the van der Waals interaction [8]. To compute this exactly is a nontrivial task, even if
the fluid interface shape was fixed. Instead, we shall use the simplifying assumption that the
van der Waals surface energy density, σ , is that obtained from the surface stress, π . In turn
π is based on the van der Waals pressure acting between two infinite parallel planar surfaces
separated by a distance, D [8]

π(D) = −CH

D3
.

CH is the Hamaker constant, a parameter dependent on the dielectric properties of the three
material media. From this pressure one obtains the surface free energy density by integration

σ(D) = −
∫ D

∞
π(τ) dτ = − CH

2D2
. (8)

Although, we implement (8) in numerical examples as the van der Waals interaction, it should
be known that this is but an approximation to the true van der Waals interaction. However, the
Derjaguin approximation [8] justifies using this expression in cases of low curvature objects.
The distance function, D = D(x, z), appearing in this expression depends on the independent
variables x and z. In the numerical work the solid is a parabolic cylinder, positioned edge-
on adjacent to the fluid interface. The cylinder’s cross-sectional profile obeys the equation,
zp(x) = zp0 + λx2

p, (see figure 1). (xp, zp) are the 2D coordinates of an arbitrary point on the
cross-section. zp0 is the minimum height of the solid at the apex above the undeformed fluid
surface and λ > 0 is a curvature parameter we refer to as the splay constant. The distance
function is defined as the distance from a point, (xp, zp), on the surface of the plate to the
unique point, (x, z(x)), on the fluid interface, in the direction of the outward normal to the
plate. That is,

D(x, z) =
√

(x − xp)2 + (z(x) − zp)2 (9)

where the points (x, z(x)) and (xp, zp) are related by the vector equation

∇p

(
z0 + λx2

p − zp

) = α(x − xp, z(x) − zp).
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∇p = (
∂

∂xp
, ∂

∂zp

)
and α is a proportionality constant providing equality between the vector

joining the two points in question and the plate’s surface vector normal. Upon eliminating α

we obtain an equation for xp in terms of x:

(x − xp) = 2λxp

(
z0 + λx2

p − z(x)
) ⇐⇒ 2λ2x3

p + xp(1 + 2λ(z0 − z(x))) − x = 0.

The physically relevant root of this cubic equation establishes xp = xp(x). In fact, the nature
of the cubic indicates that there is only one physically viable root,

xp(x) = R − 1 + 2λ(z0 − z(x))

6λ2R
(10)

where

R =
[

x

4λ2
+

√
x2

16λ4
+

(1 + 2λ(z0 − z(x)))3

216λ6

]1/3

. (11)

The two remaining roots are complex (conjugates). Thus, the distance function, D(x, z(x)),
depends on x either explicitly or implicitly via the optimal profile z(x).

In the far field, i.e. far from the vicinity of the plate, the localized van der Waals stress
ceases to have an explicit effect. Futhermore, the condition |zx | � 1 is satisfied. Equation (7)
then simplifies to the linear equation

γ zxx = Gz

with exponential solution

z(x) = C e−|x|/lG |x| 	 1 (12)

where lG = √
γ /G is the characteristic decay length, traditionally denoted by the capillary

length. Naturally, a positive constant, C, is consistent with an attractive interaction between
the plate and interface. Its value is chosen to match this far-field solution with the near-field
solution.

Numerical solution of (7) with (8) and (9) for the near-field is achieved using a fourth-
order Runge–Kutta algorithm, with boundary conditions applied on the ends of a finite interval
[0, x∞] for some conveniently selected extreme x-value, x∞:{

zx(0) = 0
z (x∞) = C e−x∞/lG .

(13)

A numerical root-finding procedure was applied to the remaining end condition

zx(x∞) = −C e−x∞/lG/ lG �⇒ zx(x∞) + z(x∞)/ lG = 0 (14)

in order to determine the initial profile value, z(0) = z0. The value of the constant coefficient,
C, is then determined. Further details of the calculation method can be found in [17].

In figure 2 we show examples of fluid interface profiles for a selected Hamaker constant,
CH , and splay parameter, λ, for various plate heights, zp0. Results for other parameter choices
are similar in character to these. On this scale the corresponding far-field solutions, (12),
projected all the way to x = 0, are all but indistinguishable from the exact numerical solutions
to (7) shown. In the example calculations a matching of (13) and (14) was performed assuming
x∞ = 0.1 m in order to obtain the full solution. For the selected value, λ = 0.1, both the plate
and the responding fluid profile have small curvature. Consequently, the conditions under
which (8) can be implemented are satisfied.

The most significant aspect of these results is the disparity in the two orthogonal length
scales. The vertical extent of deformation is only of the order of several hundreds of
nanometres, while the lateral extent of deformation is of the order of a significant fraction of
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Figure 2. Equilibrium fluid interface profiles. Physical parameters adopted are �ρ = 1 kg m−3,
γ = 72.8 mN m−1, and a Hamaker constant of CH = 10−21 J. The curves result from the
interaction with a parabolic plate of height (top to bottom): zp0 = 2270, 2400, 4000 nm. The
plate’s splay parameter, λ = 0.1 m−1.

a metre. The vertical deformation is characterized more by a length scale determined from a
complex combination of the length scale lH = √

CH/γ (0.12 nm) and the geometric lengths λ

and zp0, than by the capillary length scale lG, here equal to 8.63 cm, which is what governs the
lateral extent. In such cases the lateral extent of the ensuing deformation may not be apparent
to the naked eye. This feature has also been found in related studies of an axisymmetric system
[17]. In that paper and in [16] we also point out that a solution to an equation such as (7)
is not always possible. This indicates that there exist mathematical limits to how close one
can position the plate to the fluid interface. What we consider in the remaining paper are the
physical limits to the closest approach distance. These limits, founded on energy arguments,
show that even when a mathematical solution exists this may not be stable to even small
disturbances and therefore the profile is not likely to eventuate in practice. Again, we suppose
that an equilibrium profile, found by solving (7), does exist and is unique.

3. The stability of the air–water interface under stress

If the equilibrium profile is a minimizing profile then it must necessarily satisfy (7). However,
not every solution of (7) need constitute a minimum of the functional (3). That is, not every
solution, say ξ , need satisfy the inequality

�[ξ ] =
∫ ∞

−∞
f (x, ξ(x), ξx(x)) dx � �[ z ] (15)

for all other z ∈ �x with equality occurring only for z = ξ . To establish whether a solution z

is a minimizing profile one must look to the next term in the parameter expansion (5).
For sufficiently small ε the sign of the third term, called the second variation of the

functional, �, adequately determines the minimum or maximum or saddle point character
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of z. In physical terms, the sign of the second variation determines whether the equilibrium
profile is stable or unstable to small perturbations. The second variation, expressed as [19]

δ2
� = ε2

2

(
∂2�

∂ε2

∣∣∣∣
ε=0

)
= ε2

2
g′′(0)

involves the derivative, ∂2f/∂ε2, evaluated at ε = 0, i.e. at the equilibrium solution, z(x):(
∂2f

∂ε2

)∣∣∣∣
ε=0

= fzzη
2(x) + 2fzzx

η(x)ηx(x) + fzxzx
η2

x(x).

By means of a partial integration, the second variation of � can thus be written as [18, 22]

δ2
� = ε2

2

∫ ∞

−∞

[
fzxzx

η2
x(x) +

(
fzz − (

fzzx

)
x

)
η2(x)

]
dx. (16)

The second partial derivatives of f (x, z, p), treated as a function of independent variables,
x, z and p(=zx) occurring in this integral are, respectively,


fpp = h(x,z)

(1+p2)3/2

fzz = G + hzz(x, z)(1 + p2)1/2

fzp = phz(x,z)

(1+p2)1/2 .

(17)

Note that fzp = 0, fzz = G and fzxzx
> 0 in the case h ≡ γ , i.e. in the absence of any

externally imposed surface stress.

3.1. Reformulation of the second variation

An analysis of the stability of the equilibrium profile is hampered by the presence of the
two coefficient functions multiplying the terms η2 and η2

x in the integrand of (16). Both of
these contributions depend on the profile, z(x); they vary in magnitude and can, legitimately,
be either positive or negative. However, the difficulty diminishes if we rewrite the second
variation (16) so as to eliminate one of the coefficients. For this reformulation (presented
below) to be valid, however, we must insist that the function fpp be strictly positive in its
domain of definition. From (17) it is clear that this will hold provided h(x, z) ≡ γ + σ(x, z)

is strictly positive for all points (x, z). As the bulk of this work deals with van der Waals
interactions for the three different media, solid–fluid–fluid, in which the intervening medium
has dielectric properties intermediate of the three, one anticipates [8] that σ < 0. The analysis
below is thus limited to interaction strengths such that max |σ | < γ . By (8) this restraint
gives an upper bound on the allowed Hamaker constant for a fixed separation. Alternatively
and more appropriately, for a given Hamaker constant it gives a lower bound on the minimum
possible separation between the plate and the fluid interface, namely,

Dmin >

(
CH

2γ

)1/2

. (18)

For example, for the air–water interface and water–air–metal system, (18) gives a lower bound
for the minimum allowed separation of the order of 1 nm.

Recall (16) (modulo the unimportant prefactor of ε2/2):

δ2
� =

∫ ∞

−∞

[
fzxzx

η2
x(x) +

(
fzz − (

fzzx

)
x

)
η2(x)

]
dx. (19)

If (18) (or more generally, fpp > 0) holds one can invoke the transformation v = (fpp)1/2η

where η ∈ �x , to find that

vx = [(fpp)1/2]xη + (fpp)1/2ηx. (20)
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Note that v → 0 as |x| → ∞. Also, as hx(0, z(0)) = 0 from the condition of symmetry, we
deduce from (17), that (fpp)x = 0 at x = 0. Hence, vx(0) = 0 if η ∈ �x . Therefore, v itself
belongs to the space �x . From (20) we find that

fppη2
x(x) = [vx − [(fpp)1/2]xη]2

= v2
x +

[
1

2

(
(fpp)x

fpp

)
x

+
[(fpp)x]2

4f 2
pp

]
v2 − 1

2

[
(fpp)xv

2

fpp

]
x

.

Consequently, in (19) make the substitution

fzxzx
η2

x(x) +
(
fzz − (

fzzx

)
x

)
η2(x) = v2

x + �(x)v2 − 1

2

[
(fpp)xv

2

fpp

]
x

(21)

where the function

�(x) = 1

2

(
(fpp)x

fpp

)
x

+
[(fpp)x]2

4f 2
pp

+

(
fzz − (

fzzx

)
x

)
fpp

= 2[(fpp)xx + 2(fzz − (fzp)x)]fpp − [(fpp)x]2

4f 2
pp

(22)

has been introduced. The various terms appearing in (22) are evaluated using the explicit
expressions in (17) with z(x) as the equilibrium profile. Inserting (21) into (19) and integrating
the third term on the rhs we find

δ2
� =

∫ ∞

−∞

[
v2

x + �(x)v2
]

dx − 1

2

[
(fpp)xv

2

fpp

]x→∞

x=0

.

The last term vanishes at the upper limit by the property v(|x| → ∞) → 0, inherited from
the asymptotic behaviour of η. At the lower limit, the contribution vanishes again since
(fpp)x = 0, from the mirror symmetry of the physical problem.

In summary, the investigation of stability reduces to an analysis of the integral

I [v] := δ2
� =

∫ ∞

−∞

[
v2

x + �(x)v2
]

dx (23)

involving functions v over the space �x .
The function, �(x), is the only function involving the equilibrium profile which needs to

be considered. Although complicated in appearance it can be evaluated with knowledge of
only z(x) and zx(x). We demonstrate its general appearance and tendencies through examples
in the next section. From symmetry we expect �(x) to be an even function of x (no physical
change occurs with the transformation x → −x). Consequently, as we only consider those
functions v that belong to �x we may replace the infinite integral by twice the integral over
the semi-infinite interval [0,∞). Furthermore, as we are only interested in the sign of the
second variation, we can and will ignore all positive constants that multiply this integral
(e.g., the factor 2ε2/2).

As a trivial precursor example consider the case of a free fluid–fluid interface, z ≡ 0. The
surface stress, σ , is then zero, h = fzxzx

= γ , a constant, and the derivatives fzp = hzz = 0,
while fzz = G > 0, if the underlying fluid (say, water) is denser than that above (say, air).
It is then easy to see that �(x) = G/γ , a positive constant. From (23), the second variation
will then be positive for all v ∈ �x , and the profile, z = 0, stable to all small perturbations.
Naturally, the stability of this elementary case could equally well have been analysed directly
using (16). The strength of the reformulation, however, becomes apparent in nontrivial cases
involving a locally varying surface stress.
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This simple example is nevertheless important to consider since the function � asymptotes
precisely to this positive value in the limit x → ∞ where the influence of the van der Waals
stress is negligible and the deformed profile z → 0:

�(x) → G/γ as |x| → ∞. (24)

It now remains to establish how negative but finite the function �(x) can be in the
neighbourhood of x = 0. Interest clearly focuses on how negative �(x) can be under
typical circumstances in order for the functional I [v] to remain positive for all v and therefore
guarantee stability. We return to this question in the next section where in addition we also
consider the contrary question of how negative � must be near x = 0 to ensure instability.

3.2. Numerical examination of the stability function �

The dependence of � on both the independent variable, x, and the profile, z(x), is intricate,
made worse by the complicated dependence (9) of the distance function, D, on these quantities
via several others: zp(x) = zp0 + λx2

p, (10) and (11). At the highest level of the calculation
we have to consider the following terms in �:


(fzz−(fzzx )x )

fpp
= 1

h
[GW(zx)

3 − hzzxx − (hzxzx + hzz)W(zx)
2]

[(fpp)x ]2

4f 2
pp

= 1
4

[
1
h
(hzzx + hz) − 3zxzxxW(zx)

−2
]2

and

1

2

(
(fpp)x

fpp

)
x

= 1

2

[
6z2

xz
2
xx

W(zx)4
− 3

(
z2
xx + zxzxxx

)
W(zx)2

− (hzzx + hz)
2

h2

+

(
hxx + 2hzxzx + hzzz

2
x + hzzxx

)
h

]
.

The second and third derivatives of z can be evaluated with the help of the Euler–Lagrange
equation (7). The various first and second partial derivatives of h require corresponding
derivatives of the distance function, D. Partial derivatives of D with respect to x and z are both
explicit and implicit through zp and xp. Further evaluation of these, however, is both tedious
and unenlightening. Hence, we shall not present these explicit results here.

Figure 3 demonstrates typical � behaviour as a function of lateral extent. As mentioned
earlier, physically one would expect that as either the Hamaker constant, CH , is increased or
the apex of the plate, zp0, is lowered, or with any combination of these, the fluid interface would
rise, eventually reaching some limit beyond which the lower fluid would preferentially wet the
solid. This is translated mathematically into the expectation that � would become increasingly
more negative thus giving cause for the functional, I [v], to become negative for certain
perturbations, v. At all times, however, � must satisfy the asymptotic condition (24). These
expected trends in � are clearly confirmed in the numerical examples. Note that since fzxzx

is
strictly positive, � remains everywhere finite (in figure 3(a) the lowermost curve corresponding
to the lowest height of the plate is bounded below by a finite negative value, � ≈ −5110,
attained at x = 0). Some important details are worth explicitly pointing out. Since we consider
the same fluid in both cases, the same asymptotic limit is approached, G/γ = 134.34 m2.
Increasing either zp0 or the strength of the van der Waals stress serves to deepen the negative
well about the origin; the x-range, however, does not change appreciably as this is mostly
determined by the asymptotic behaviour of z(x) ∼ exp(−|x|/lG). Implementation of other
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Figure 3. Plots of the stability function corresponding to the van der Waals interaction between a
fluid interface and a parabolic plate of vertical cross-section, zp(x) = zp0 + λx2

p , for a fixed splay

parameter, λ = 0.1 m−1. Other physical parameters are �ρ = 1 kg m−3, γ = 72.8 mN m−1. In
(a) the Hamaker constant, CH = 10−21 J, and the curves (bottom to top) refer to plate heights of
zp0 = 2270, 2400, 3000, 4000 nm. In (b) CH = 10−19 J and the curves (bottom to top) refer to
plate heights of zp0 = 9500, 10 500, 12 000 nm.

parameter values for G,CH or λ does not change the impression already given by the examples
in figure 3. What should be kept in mind, however, is that the parameter values themselves are
not as important as their combinations determining the length scales, lG and lH . Features
present in figure 3 do arise for other parameter values and will appear at similar locations
when measured on a relative scale.

4. Sufficient conditions for stability and instability

In the previous section we demonstrated by rigorous argument and then by example that the
derived stability function, �, of the equilibrium profile, z = z(x), asymptotically approaches



8840 S J Miklavcic

a positive constant. Furthermore, numerical examples indicate that a constant (possibly
negative) can be found such that � is bounded below. In fact, irrespective of the examples it
is clear that provided fzxzx

> 0 for the Euler–Lagrange profile, z = z(x), these same features
will always appear for �. We summarize these facts in the following supposition. For some
finite constants L and U > 0, suppose that � satisfies the conditions{

L < � < U for all x ∈ R

� → U as |x| → ∞.

The remaining section addresses questions about the values of U and, in particular, L for which
one can make definite statements about the stability of the equilibrium profile. Actually, as
in [23] two complementary questions are addressed here. One concerns L values for which
stability is guaranteed. The other concerns L values for which a profile is definitely unstable. In
contrast to the methods used in [23], the proof of the following instability condition is based on a
Ritz optimization, while the stability result is established using function inequality arguments.
The proofs of these important and fundamental results are relegated to the appendix.

We note from section 2 the significance of the lateral length scale, lG = √
γ /G, associated

with the solution to the Euler–Lagrange equation. Since � clearly depends explicitly on the
profile, it too is governed by the same scaling. This motivates the introduction of the scaled
variable y = x/lG into the second variation, (23), which thus becomes

I [v] =
∫ ∞

−∞

[
v2

x(x) + �(x)v2(x)
]

dx = 1

lG

∫ ∞

−∞

[
v2

y(ylG) + l2
G�(ylG)v2(ylG)

]
dy

= 1

lG

∫ ∞

−∞

[
w2

y + �(y)w2
]

dy. (25)

The definition of �(y) as l2
G�(ylG) is fortuitously convenient. Asymptotically we find that

� → 1 as |y| → ∞ (26)

as a consequence of the asymptotic constant, U = G/γ = 1
/
l2
G, from (24). Stability questions

now focus on the normalized expression (modulo the irrelevant positive constant multiplier).
The integral in (25) is the object of study of the appendix. There we establish that it will
be positive definite if �(y) � K − E e−y2

for given K > 0 and if E � K + 4. On the
other hand, it can be negative for some functions, w, if for given K,�(y) � K − E e−y2

when E > 3[(29 − 3K)
√

6 +
√

3894 − 4500K + 2550K2]/32. In the present particular
application we have, from (25) and (26), that K = 1. We therefore have the following two
corollaries (of lemmas 3 and 5) which state fundamental sufficient conditions for stability
and instability, respectively, against infinitesimal disturbances. These are independent of any
approximation involved in the choice of the surface stress function and require only that the
interaction manifests itself in a locally varying surface energy density, leading to a surface
energy contribution to the total free energy.

Condition 1 (Stability). Let z ∈ �x be the solution of (7) for the equilibrium profile of
the fluid interface subject to a local van der Waals stress. Furthermore, let z(x) satisfy the
constraint that � = �(x, z(x)) remain bounded as described in the beginning of this section,
for all x ∈ R. Then, there exists a positive constant E∗ such that if

�(x) � 1 − E e−(x/lG)2

l2
G

=: t (x) ∀x ∈ R (27)

for some E � E∗ then the equilibrium profile will be stable to arbitrary infinitesimal
perturbations v ∈ �x . In fact, E∗ = 5.
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Figure 4. Regions of stability, �(y) � 1 − E∗ exp(−y2), and instability, �(y) � 1 −
E∗ exp(−y2). A K value of unity was chosen for demonstration purposes.

This sufficient condition for stability can be complemented by the following sufficient
condition for instability:

Condition 2 (Instability). Let z ∈ �x be the solution of (7) for the equilibrium profile of
the fluid interface subject to a local van der Waals stress. Furthermore, let z(x) satisfy the
constraint that � = �(x, z(x)) remains bounded as described above for all x ∈ R. Then,
there exists a positive constant E∗ such that if

�(x) � 1 − E e−(x/lG)2

l2
G

=: q(x) ∀x ∈ R (28)

for some E > E∗ > 5(3/2)3/2 ≈ 9.186, then the equilibrium profile will not be stable to
arbitrary perturbations v ∈ �x . In fact, it is sufficient that

E > E∗ = 3
32

[
26

√
6 +

√
1944

] ≈ 10.10

for instability.

As stated, the proofs of these two conditions follow from a direct application of
lemmas 3 and 5, respectively, given in the appendix.

These conditions do not say that the function � need necessarily behave pointwise as a
sum of a constant and a Gaussian (although the results shown in figure 3 are consistent with
precisely this form), they only indicate limiting cases on which definitive stability statements
can be founded. The results are illustrated in figure 4 which features, for K = 1, the two
limiting boundary curves, l2

Gt(x) = K − E∗ exp(−x2) and l2
Gq(x) = K − E∗ exp(−x2),

dividing the half plane into three regions. Equilibrium profiles giving rise to �-functions
which lie above the upper solid curve, t (x), fall into the category of profiles that are stable
to all perturbations. Equilibrium profiles giving rise to �-functions which lie below the
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lower solid curve, q(x), fall into the category of profiles unstable to some perturbations
(e.g., w1(x) used in the proof of lemma 5, in the appendix). Conditions 1 and 2 are, by their
nature, sufficient conditions. Neither double as necessary conditions for stability or instability,
respectively. Consequently, since E∗ �= E∗, there exists a third region in the half-plane about
which nothing conclusive can be stated in either stability sense. Still, considerable insight into
the stability–instability question can be obtained from conditions 1 and 2.

The comparisons made in figure 5 are self-explanatory. The results in both figures 5(a)
and (b) suggest that the two uppermost �-curves correspond to equilibrium profiles that are
stable to arbitrary small disturbances. Unfortunately, the stability properties of the remaining
examples are not possible to establish. The interface profiles related to these lower plate
heights clearly do not satisfy the assumptions of condition 2. Instead they either extend into
or across the region bounded by the two stability limit curves where nothing definite can be
said. Extension beyond this region, in the manner, say, of the lowest curve in figure 5(a) is
quite suggestive of instability. However, with the tools presented here we cannot draw such
a conclusion with any certainty. Given the exponential decay of the profile, it is singularly
surprising that the �-function decays so much more rapidly. It is possible that its asymptotic
approach to the limiting positive value may be exponential. However, this must take effect
well after the observed initial, more rapid decay. In any case it is clearly not apparent on the
scale of the figure.

Notwithstanding any incompatiabilities with present examples, one may still certainly
conclude that condition 1 is an effective tool for indicating the possible stability of solutions to
the Euler–Lagrange equation. The condition here takes obvious advantage of the fact that the
calculated stability function, �(x), decays more rapidly than the Gaussian, ∼exp

(−x2
/
l2
G

)
,

which characterizes the stability limit. Furthermore, given the rigorous argument which leads
to condition 2, its value should not be underestimated; it too remains an unambiguous tool
that is more appropriately used in circumstances where the stability function decays more
slowly than the Gaussian. Unfortunately, its potential utility was not possible to demonstrate
here.

5. Summary

This paper concerns an analysis of the stability of an infinite planar fluid–fluid interface
subjected to a two-dimensional van der Waals stress arising from the presence of a solid
two-dimensional plate positioned edge-on above the interface. The physical problem models,
for example, the setup of a Wilhelmy plate experiment just prior to plate immersion through
the air–water interface and three-phase contact line formation. However, the analysis and
results are of wider validity. General results on the state of stability of a stressed fluid
interface are established and expressed as conditions which are either sufficient to ensure
a stable interface or an unstable interface. All the analyses focus on a sole, key function,
�(x), of the equilibrium profile, z(x), the latter a solution of the Euler–Lagrange equation for
this problem. Our principal results are sufficient conditions for stability or instability based
on a pointwise relation between l2

G�(x) and the elementary function, K − E exp
(−x2

/
l2
G

)
.

Through examples (figure 3) we have demonstrated the general functional behaviour of �(x)

and its dependence on physical parameters. The examples give physical credence to the
choice of stability limit functions, K − E exp

(−x2
/
l2
G

)
. The sufficient conditions proved

in the appendix highlight special limiting values of the constant, E. Comparisons with actual
cases (figure 5) indicate the potential applications of these sufficient conditions. In the given
situations the stability condition is an effective limiting criterion as the stability function, �,
decays much faster than the stability limit function, while the instability condition is less
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Figure 5. Comparison of the normalized stability function, �l2
G, with the stability limit functions

defined in conditions 1 and 2. The thick solid lines correspond to computed stability functions
for the van der Waals interaction between the fluid interface and a parabolic plate for a fixed
splay parameter, λ = 0.1 m−1. Other physical parameters are �ρ = 1 kg m−3, γ =
72.8 mN m−1. In (a) CH = 10−21 J, and the curves (bottom to top) refer to plate heights of
zp0 = 2270, 2400, 3000, 4000 nm. In (b) CH = 10−19 J and the curves (bottom to top) refer to
plate heights of zp0 = 9500, 10 500, 12 000 nm. Thin solid lines are normalized stability limit
functions, t (x)l2

G and q(x)l2
G.

fruitful for the same reason, but would be more appropriate in cases involving slower decaying
stability functions. Further efforts aimed at establishing sufficient as well as necessary stability
or instability criteria that complement those given here are under way. Hopefully, it will be
possible to develop criteria that are more appropriate to the observed behaviour.
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Appendix

A.1. The Ritz analysis of stability–instability

In this appendix we review the essentials of the Ritz method [21] applied to the general
functional

I [v] =
∫ ∞

0

[
v2

y + �(y)v2
]

dy. (A1)

Independent and dependent variables, y and �, are introduced in this and the next section to
highlight the generality of the arguments presented. In this paper the properties of the Ritz
method are exploited (in the next section) to provide a sufficient condition for instability.

The starting assumption is naturally that the functional, I [v], does indeed possess a
greatest lower bound. That is, there exists an I and a v ∈ �x such that

I � I [v] = min
v∈�x

I [v].

From �x one constructs a set of N linearly independent members, denoted as S = {φn}Nn=1,
and then generates a larger set, �N , of functions of the form

∑N
n=1 bnφn, where the bn are real

constants. Obviously, �N is a subspace of �x . The point to the space, �N , is that given an
arbitrary v ∈ �x , an element ψ of the form

∑N
n=1 bnφn can be found in �N whose functional

value, I [ψ], approximates arbitrarily closely the functional value, I [v]. That is, for given
ε > 0, a ψ can be found in �N such that |I [v]−I [ψ]| < ε for a given arbitrary v ∈ �x . Now,
considering functions within �N itself, there exists an element denoted by uN = ∑N

n=1 bnφn

that gives the least value to the multivariable function G(b1, b2,...,bN) = I
[∑N

n=1 bnφn

]
, so

that I [uN ] � I [ψ] for all ψ ∈ �N . If the integrand of I is a continuously differentiable
function, then G will be a continuously differentiable function of (b1, b2, . . . , bN) and uN can
be constructed from the solution of the set of N homogeneous equations

∂G

∂bn

= 0 n = 1, 2, . . . , N. (A2)

Clearly, the procedure has the property that I [uN+1] � I [uN ] since �N+1 ⊃ �N is a larger
subset of �x . Thus, the Ritz approach for given index N < ∞ provides an upper estimate of
the minimum value of (A1).

Consider the subset of functions

S = {y2n e−y2}n�0

extracted from the set �x . Let {bn} be a sequence of real numbers. The first member of S
does not vanish at x = 0. In the present physical context an arbitrary perturbation constructed
from members of S including the first member deforms the profile closer to or further away
from the plate.

A.1.1. Optimization with respect to the set S. We consider fluctuations of the form

v(y) = α e−y2
+

N∑
n=1

bny
2n e−y2 = α e−y2

+
N∑

n=1

bnφ
(n) (A3)
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where bn are constants to be optimized. As already remarked the perturbation gives a finite
contribution at the origin, either bringing the profile up closer to the plate if α > 0 or
distancing it further if α < 0. |α| thus determines the magnitude of the central displacement.
The derivative of v

vy = −2yα e−y2
+

N∑
n=1

bn2y2n−1 e−y2
(n − y2) = −2yα e−y2

+
N∑

n=1

bnφ
(n)
y

so that

v2 = α2 e−2y2
+

N∑
n=1

b2
n(φ

(n))2 + 2α e−y2
N∑

n=1

bnφ
(n) + 2

N−1∑
n=1

N∑
m=n+1

bnbmφ(n)φ(m)

and

v2
x = 4x2α2 e−2x2

+
N∑

n=1

b2
n

(
φ(n)

x

)2 − 4xα e−x2
N∑

n=1

bnφ
(n)
x + 2

N−1∑
n=1

N∑
m=n+1

bnbmφ(n)
x φ(m)

x .

As before, we insert these results into the integral, I [v], to form the function

G(b1, b2, . . . , bN) = I [{bn}] = A +
N∑

n=1

bnBn +
N∑

m,m=1

bnbmCnm (A4)

where


A = α2
∫ ∞

0

[
4y2 e−2y2

+ �(y) e−2y2]
dy

Bn = 2α
∫ ∞

0

[
�(y) e−y2

φ(n) − 2y e−y2
φ(n)

y

]
dy n = 1, 2, . . . , N

Cnm = ∫ ∞
0

[
φ(n)

y φ(m)
y + �(y)φ(n)φ(m)

]
dy n,m = 1, 2, . . . , N.

(A5)

Differentiating in turn with respect to the variable coefficients (b1, b2, . . . bN) and setting the
derivatives to zero, in accordance with (A2), leads to N equations in the N unknowns {bn}

N∑
m=1

Cnmbm + Bn = 0 n = 1, 2, . . . , N. (A6)

The first approximation (N = 1) in this case reads

b1 = − B1

C11
= −α

∫ ∞
0 [�(y) − 4(1 − y2)]y2 e−2y2

dy∫ ∞
0 [4(1 − y2)2 + �(y)y2]y2 e−2y2 dy

(A7)

and the approximation to the minimum value, I [u1 = α e−y2
+ b1φ

(1)], is given by

min
v∈�x

I [v] � I [u1] = A − B2
1

C11

= α2
∫ ∞

0
[4y2 + �(y)] e−2y2

dy − α2

[ ∫ ∞
0 [�(y) − 4(1 − y2)]y2 e−2y2

dy
]2∫ ∞

0 [4(1 − y2)2 + �(y)y2]y2 e−2y2 dy
.

(A8)

In the application of the Ritz method we can drop the unimportant factor of α2 since only
the sign of (A8) is important.



8846 S J Miklavcic

A.2. Inequalities concerning the functional I [v] = ∫ ∞
0

[
v2

y + �(y)v2
]

dy

In this appendix we consider the functional

I [v] =
∫ ∞

0

[
v2

y + �(y)v2
]

dy

and establish sufficient conditions on the function � which ensure that I [v] is either strictly
positive or strictly negative for all v ∈ �x . We suppose that � ∈ L2(R), that it is an even
function and that there exist numbers K,E > 0 such that{

K − E < � < K for all y ∈ R

� → K as |y| → ∞.
(A9)

We then have the following lemmas on positivity and negativity of I [v]:

Lemma 3 (Positivity). Let � = �(y) satisfy the above conditions on continuity, integrability
and boundedness for all y ∈ R. Let K > 0 be given. Then, there exists a positive constant
E∗ such that if

�(y) � K − E e−y2 =: t (y) ∀y ∈ R (A10)

for some E � E∗ then the functional I [v] will be strictly positive for arbitrary v ∈ �x . In
fact, E∗ = 4 + K .

A proof relies on the use of the following lemma which is of interest in its own right.
Firstly, define L2

w(R) to be the space of continuous functions which are square integrable over
the real line with respect to the weight function w(y) := exp(−y2). That is

L2
w(R) =

{
u ∈ C(R);

∫ ∞

−∞
e−y2 |u|2 dy < ∞

}
.

It is known [24] that L2
w(R) is a Hilbert space equipped with the inner product

(u, v)w :=
∫ ∞

−∞
w(y)u(y)v(y) dy =

∫ ∞

−∞
e−y2

u(y)v(y) dy

and that the set {Hn(y)}∞n=0 of Hermite polynomials

Hk(y) = (−1)k ey2 dk

dyk
e−y2

forms a dense, complete subset of L2
w(R). Consequently, any u ∈ L2

w(R) can be expressed as
a series of the form

u =
∞∑

n=0

anHn(y) y ∈ R

the convergence being uniform. We now state the lemma.

Lemma 4. Let uy, u ∈ L2
w(R). Then,∫ ∞

−∞
e−y2

u2
y dy > 2

∫ ∞

−∞
e−y2

u2 dy (A11)

unless u is a constant function.

This result is likely to be well known. However, we have not found it in any of the
standard texts [25].



On the stability of planar fluid interfaces under van der Waals surface forces 8847

Proof. As stated above, any function u ∈ L2
w(R) can be represented in a series of the form

u =
∞∑

n=0

anHn(y) y ∈ R.

By assumption the convergence is uniform and since uy ∈ C(R), its expansion is equal, in the
distributional sense, to the pointwise derivative of the above series representation. Assuming
uniform convergence of the various series, the processes of summation and integration can be
interchanged and we therefore have

∫ ∞

−∞
e−y2

u2
y dy :=

∫ ∞

−∞
e−y2

[ ∞∑
n=1

an

d

dy
Hn(y)

]2

dy

=
∫ ∞

−∞
e−y2

[ ∞∑
n=1

a2
n

[
d

dy
Hn(y)

]2

+ 2
∞∑

n=1

∞∑
m=n+1

anam

dHn

dy
(y)

dHm

dy
(y)

]
dy

=
∫ ∞

−∞
e−y2

[ ∞∑
n=1

a2
n[2nHn−1(y)]2 + 2

∞∑
n=1

∞∑
m=n+1

anam4nmHn−1(y)Hm−1(y)

]
dy

where we have used the identity

d

dy
Hk(y) = 2kHk−1(y)

to obtain the last equality. Furthermore, using the orthogonality property of the polynomials∫ ∞

−∞
e−y2

Hk(y)Hl(y) dy = 2kk!
√

πδkl

with respect to the given inner product we obtain∫ ∞

−∞
e−y2

u2
y dy =

∞∑
n=1

a2
n[2n]22n−1(n − 1)!

√
π

= 2
∞∑

n=1

a2
nn2nn!

√
π = 2

∞∑
n=0

a2
nn2nn!

√
π

> 2
∞∑

n=0

a2
n2nn!

√
π =: 2

∫ ∞

−∞
e−y2

u2 dy.

The last result being an identity for a uniformly convergent series of Hermite functions. This
inequality is valid unless an = 0 for n > 0 in which case the sign of the inequality is reversed
if in addition a0 �= 0, or replaced by equality if a0 = 0. That is, the inequality holds unless u
is constant. The lemma is proved. �

Proof of lemma 3. Under the stated assumption we have

I [v] =
∫ ∞

0

(
v2

y + �(y)v2) dy >

∫ ∞

0

(
v2

y +
(
K − E e−y2)

v2) dy = I t [v]. (A12)

Positivity is clearly guaranteed in the event that E < K , we are therefore interested in positive
values of E > K . For any given v ∈ �x , the last integral defines a function g(E; v)

g(E; v) =
∫ ∞

0

(
v2

y +
(
K − E e−y2)

v2
)

dy



8848 S J Miklavcic

with the properties{
g(K, v) > 0

gE(E; v) = − ∫ ∞
0 e−y2

v2 dy < 0

for any v ∈ �x . Consequently, g decreases monotonically with E from some positive value
at E = K . Therefore, there exists a maximum value of E,E∗ > K , for which the integral
remains positive for all v ∈ �x .

We now utilize the inequality provided in the above lemma, or rather a modified version
of it, to establish the value of E∗. Clearly, the inclusion �x ⊂ L2

w(R) is true. Since elements
in �x are even functions of the independent variable we must have that any v ∈ �x can be
expressed in the form

v =
∞∑

n=0

anH2n(y) y ∈ R

where H2n(x) are the even Hermite functions of x. Invoking this special case in the proof of
the lemma shows that for functions in �x , inequality (A11) can be replaced by∫ ∞

−∞
e−y2

v2
y dy � 4

∫ ∞

−∞
e−y2

v2 dy.

Note also that since nonzero constant functions cannot belong to �x it is unnecessary to
explicitly stipulate the additional restriction given in the lemma. The equality in this last result
covers the case of the zero function. Implementing this inequality gives

I t [v] =
∫ ∞

0

(
v2

y +
(
K − E e−y2)

v2
)

dy >

∫ ∞

0
v2

y + (K − E) e−y2
v2 dy

=
∫ ∞

0
v2

y dy − (E − K)

∫ ∞

0
e−y2

v2 dy

�
∫ ∞

0
v2

y dy − (E − K)

4

∫ ∞

0
e−y2

v2
y dy

=
∫ ∞

0

[
1 − (E − K)

4
e−y2

]
v2

y dy.

Without question, if E � 4 + K , then

I [v] � I t [v] �
∫ ∞

0

[
1 − (E − K)

4
e−y2

]
v2

y dy > 0 for all v ∈ �x.

This last inequality establishes the sought after value of E∗ = 4 + K . �

This sufficient condition for positivity can be complemented by the following sufficient
condition for negativity.

Lemma 5 (Negativity). Let � = �(y) satisfy the above conditions on continuity, integrability
and boundedness for all y ∈ R. Let K > 0 be given. Then, there exists a positive constant E∗
such that if

�(y) � K − E e−y2 =: q(y) ∀y ∈ R (A13)

for some E > E∗ > (7 + 3K)(3/2)3/2/2, then the functional I [v] can take negative values for
some v ∈ �x . In fact, it is sufficient that

E > E∗ = 3
[
(29 − 3K)

√
6 +

√
3894 − 4500K + 2550K2

]/
32

for negativity to arise.
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Proof. The proof follows from the Ritz analysis above, assisted by the following integrals:


C∗ = ∫ ∞
0

[
4(1 − y2)2 − (

K − E e−y2)
y2

]
y2 e−2y2

dy = (7 + 3K)
√

2π
64 − E

72

√
3π

A∗ = ∫ ∞
0

[
4y2 − (

K − E e−y2)]
e−2y2

dy = (1 + K)
√

2π
4 − E

√
3π

6

B∗ = − ∫ ∞
0

[
D e−y2

+ 4(1 − y2)
]
y2 e−2y2

dy = (
K − 1

4

)√
2π
4 − E

36

√
3π.

(A14)

An important feature of the Ritz theory is that the sequence of approximate minimizers, {um},
with um defined as in (A3) but using the optimally determined coefficients, {bn}, of section
4.1, leads to the following sequence of inequalities

min
v∈�x

I [v] � · · · � I [uN+1] � I [uN ] � · · · � I [u2] � I [u1]. (A15)

However, if �(y) � K − E e−y2
for all y ∈ R then clearly

I [v] � I q[v] :=
∫ ∞

0

[
v2

y +
(
K − E e−y2)

v2
]

dy ∀v ∈ �x. (A16)

In particular, inequality (A16) holds for any member of the Ritz set of minimizers {um}.
Consequently, negativity would be guaranteed if one can show that any I q[um] in the sequence

· · · � I q[uN+1] � I q[uN ] � · · · � I q[u2] � I q[u1].

is negative.
Denote by {wm} the sequence of Ritz minimizers of I q[v] defined in (A16) having the

form (A3) with optimized coefficients {bn} determined as outlined in section 4. Using the
integrals defined in (A5) we have for N = 1 that

min
v∈�x

I [v] � I [u1] = A − 1

C11
B2

1 � I q[u1] =
∫ ∞

0

[
(u1)

2
y +

(
K − E e−y2)

u2
1

]
dy

according to (A16). Moreover, we find that

A − 1

C11
B2

1 � A∗ − 1

C∗
B2

1

� A∗ +
1

|C∗|B
2
1

� A∗ +
1

|C∗| (B∗)2 =: I q[w1].

The first inequality is valid provided C11 < C∗ < 0 and this will be true if E >

(7 + 3K)(3/2)3/2/2 ≈ 6.43 for K = 0. By inspection, (A14) leads to the asymptotic
behaviour

I q[w1] −→ (1 + K)

√
2π

4
−

√
3π

9
E

as E → ∞. Consequently, for E large enough, I q[w1] will be negative, by the preceding
inequality. To complete the proof we need only to find the smallest value of E for which
I q[w1], on the branch converging to this asymptotic, will be negative. Since I q [w1] is quadratic
in E, the largest of the two roots of I q[w1] will naturally be the one of interest. This root is
quoted in the theorem. Its approximate value for K = 0 is E∗ � 12.5097, while it achieves
an absolute minimum value of (E∗)min = min

K
E∗ = 33

√
6/8 � 10.10 when K � 1.01. Thus,

for any E > E∗, the functional can take negative values for some functions. Note that it is
easy to confirm by elementary means that the condition E∗ = E∗(K) � (7 + 3K)(3/2)3/2/2
ensuring C∗ = −|C∗| < 0 is satisfied for all K values. Equality occurs at a single point of
tangency, at the value K � 1.8. �
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Note that if in the proof of the preceding lemma we considered a Ritz approximation of
higher order than the first (N = 1), then the above generous estimate of E∗ would be reduced,
bringing the lower curve in figure 4 up toward t (y).
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